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Abstract. In this work, we present a conceptual approach to the conver-
gence dynamics of interactive dimensionality reduction (iDR) algorithms
from the perspective of a well stablished theoretical model, namely state-
space theory. The expected benefits are twofold: 1) suggesting new ways
to import well known ideas from the state-space theory that help in the
characterization and development of iDR algorithms and 2) providing a
conceptual model for user interaction in iDR algorithms, that can be easily
adopted for future interactive machine learning (iML) tools.

1 Introduction

The communities of data visualization and machine learning have been becoming
aware of the amazing opportunities of bringing together intelligent algorithms
and human perception. An emerging field in the epicenter of this common place
is the development of steerable machine learning algorithms [1]. Dimensionality
reduction (DR) techniques provide a way to find latent low dimensional struc-
tures in high dimensional data, resulting in a mapping from a high dimensional
space on a low dimensional space that makes it possible to visualize items ar-
ranged in an ordered way, following a spatialization principle (close ⇡ similar)
allowing the user to interpret and interact with the data. Interaction provides
feedback in the visualization process, resulting in a virtuous cycle where the user
is part of the loop and drives the process to increase knowledge and focus on the
interesting patterns or aspects of the problem –see [2] for an enlightening model
of the visualization process. Despite traditional interaction mechanisms (zoom,
pan, focus & context, etc.) help the user to carry out this process, the transfor-
mations induced on the view are quite basic and far from “intelligent”. In the
last few years, some works have proposed more advanced interaction schemes,
involving direct manipulation of the intelligent data analysis algorithms used
for visualization [3, 4, 5, 6, 7]. More recently, closely related to the paradigm
proposed in [1], an interactive version of DR (iDR) based on visualizing and
interacting with intermediate results during convergence was proposed for the
analysis of time varying data or correlation analysis, [8, 9].

In this work, we present a conceptual approach to iDR convergence dynamics
from the perspective of a well stablished theoretical model, namely state-space
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theory. The expected benefits are twofold: 1) suggesting new ways to import well
known ideas from the state-space theory and 2) providing a conceptual model
for user interaction in iDR, that can be easily adopted for future iML tools.

2 Conceptual formulation of interactive DR
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Rn. We define the configuration vector of set P as the vector composed of the
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The configuration vector p is a single point of the configuration space RnQ that
uniquely defines the spatial layout of the points pi.

Formulation in state-space theory. Let’s consider a DR algorithm that
takes a set of points X = {xi}i=1,...,Q, being xi 2 RD, in the input data space,
and yields a set of projections Y = {yi}i=1,...,Q, being yi 2 Rd, in a low-
dimensional visualization space V 2 Rd. Considered as systems that evolve in
time during the convergence stage, DR algorithms can be viewed as dynamical

systems. A convenient description of DR dynamic behavior is the following
state-space equation

ẏ = f(y,u) (1)

whose state is the projection configuration vector, defined as
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that describes the current projections yi, and its input or exogenous variable is
the context configuration vector
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which is composed of the input data points xi, plus the set of adjustable param-
eters w
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m specific to the DR algorithm. The DR algorithm has a cost
function J(y,u) that depends on the projections y, the input data x and the
DR parameters w. During the DR convergence J is optimized for y, within a
given context u.

To express this optimization from a computational framework, assuming
small time increments �t, equation (1) can be approximated into the discrete
form �y/�t = f(y,u), that is, �y = �t · f(y,u), which turns into

y(t + 1) = y(t) + �t · f(y(t),u(t)) (2)

In the last expression it is made evident that, at every step, the DR algorithm
takes an initial projection y(t) and evolves to a new (updated) projection y(t+1).
It can also be noted that equation (2) conceptually resembles a gradient descent
approach, that is at the heart of many non-convex DR algorithms (see e.g. [10]).

y(t)

ẏ(t)

In this case, the term f(y,u) can be interpreted as the gradient of the cost
function

f(y,u) ⇡ @J(y,u)

@y

Under the hypothesis of a stable algorithm, the state equation (1) reaches a
steady state for ẏ = 0 resulting in the following condition expressed in implicit
form

0 = f(y0
,u

0) (3)

The previous expression states that the context u

0 forces a final projection y

0

that results from a new equilibrium state, although such projection might not
be unique. An important consequence of equation (3) is that a change in the
context u

0 may induce a change in the steady-state projection y

0. This fact is
indeed the key to bring interactivity into the DR visualization.

A further consequence of this approach is the possibility to analyze the DR
from a dynamic point of view. Small variations around the equilibrium point 0
allow us to consider the linear model ẏ = Ay + Bu, which paves the way for
rigorous local analysis of stability and dynamical behavior of iDR convergence,
based on eigenmode analysis of the state matrix A = @ f(y,u)/@y|0.

3 Context-based steering of DR projections

As seen in the previous section, the context u includes: a) the input dataset X,
and b) cost-function specific parameters w = (w1
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m) that the user can
modify. Both components can vary during the algorithm execution, resulting in
di↵erent interactive DR operation modes.

Tracking time-varying input datasets. On one side, the input dataset can
be composed of time varying data X(t) = {x1(t), . . . ,xQ(t)}. In this case, the re-
sulting dynamical model contains a time varying input u = u(t), thereby adding
a forced dynamics component that drives the result. In case that x reaches a
steady state x

0 for t ! 1, the DR algorithm converges to 0 = f(y0
, (x0

,w)),
resulting in a final projection dependent on the steady-state input dataset x

0

and the selected DR optimization parameters w. Time-varying input data arise
in analyses where a group of multivariate items evolve in time. Many real sit-
uations might conform to this formulation, such as the analysis of groups of
patients during epidemics, maybe with control subgroups under experimental
treatments, analysis of evolving social networks composed of many users, each
defined by several parameters, or analysis of electric power networks dynamics
under failures or special load conditions. The result of this is a dynamic DR
projection whose items are continuously rearranged according to their evolving
similarities. Thus, if an item xi undergoes at time t a significant change in its
relationships to the other items with respect to time t� 1, its projection yi will
move apart revealing a change condition.

Steering DR optimization parameters. There exists a wide variety of algo-
rithms in DR literature [11]. Most parameters in DR algorithms are related to
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Fig. 1: Model describing the coupled interaction between the user and the DR
algorithm

classification is looked for, the best projection happens for � = 1, projecting
all members of each class on one single point (their representative codebook)
respectively.

4 A model of interaction between DR and the user

During an interactive DR session, the user’s knowledge and the DR visualization
evolve in a coupled manner, hopefully resulting in an increase of the user’s
knowledge. Inspired by the model described in [2], the knowledge of the user
evolves depending on the visualization and the current knowledge state as k̇ =
g(k,y). In parallel, based on the current state of the user’s knowledge k and
the current projection state y, the user steers the DR configuration parameters
as w = h(k,y) to recompute the projection, according to new criteria that
better meet the user’s interest –for instance, depending on the problem needs,
the user may wish to tune the DR algorithm to favour intrusions or extrusions
[14]. In control theory, the latter equation can be seen as a control law, since
it defines an input value u (depending on w) that manipulates the dynamical
system, according to some target (here, maximizing user’s knowledge), based on
the information of the current system state. This results in a coupled system
–see Fig. 1– containing the current user’s knowledge and the current projection,
that models the interaction between the user and the DR algorithm, whose final
result (k0

,y

0) mainly depends on the input data x to be analyzed, assuming that
the user is not influenced by other factors. The quality of the final knowledge
k

0 depends on a good design exploiting the synergy between the algorithm f()
the user’s mind capabilities g() and the interaction h().

5 Conclusion

In this paper we have presented a state-space approach to provide a concep-
tual model of the iDR dynamics. We show that the dynamics of iDR can be
considered as a particular case of the more general state-space formulation of
dynamic systems, provided that we consider the “state” of the iDR system as a
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