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Abstract. In this work, we present a conceptual approach to the conver-
gence dynamics of interactive dimensionality reduction (iDR) algorithms
from the perspective of a well stablished theoretical model, namely state-
space theory. The expected benefits are twofold: 1) suggesting new ways
to import well known ideas from the state-space theory that help in the
characterization and development of iDR algorithms and 2) providing a
conceptual model for user interaction in iDR algorithms, that can be easily
adopted for future interactive machine learning (iML) tools.

1 Introduction

The communities of data visualization and machine learning have been becoming
aware of the amazing opportunities of bringing together intelligent algorithms
and human perception. An emerging field in the epicenter of this common place
is the development of steerable machine learning algorithms [1]. Dimensionality
reduction (DR) techniques provide a way to find latent low dimensional struc-
tures in high dimensional data, resulting in a mapping from a high dimensional
space on a low dimensional space that makes it possible to visualize items ar-
ranged in an ordered way, following a spatialization principle (close ⇡ similar)
allowing the user to interpret and interact with the data. Interaction provides
feedback in the visualization process, resulting in a virtuous cycle where the user
is part of the loop and drives the process to increase knowledge and focus on the
interesting patterns or aspects of the problem –see [2] for an enlightening model
of the visualization process. Despite traditional interaction mechanisms (zoom,
pan, focus & context, etc.) help the user to carry out this process, the transfor-
mations induced on the view are quite basic and far from “intelligent”. In the
last few years, some works have proposed more advanced interaction schemes,
involving direct manipulation of the intelligent data analysis algorithms used
for visualization [3, 4, 5, 6, 7]. More recently, closely related to the paradigm
proposed in [1], an interactive version of DR (iDR) based on visualizing and
interacting with intermediate results during convergence was proposed for the
analysis of time varying data or correlation analysis, [8, 9].

In this work, we present a conceptual approach to iDR convergence dynamics
from the perspective of a well stablished theoretical model, namely state-space
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Abstract. This paper describes a procedure based on the use of man-
ifold learning algorithms to visualize periodic –or nearly periodic– time
series produced by processes with di�erent underlying dynamics. The
proposed approach is done in two steps: a feature extraction stage, where
a set of descriptors in the frequency domain is extracted, and a mani-
fold learning stage that finds low dimensional structures in the feature
space and obtains projections on a low dimensional space for visualiza-
tion. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two
kinds of asymmetries, using four state-of-the-art manifold learning algo-
rithms for comparison purposes. In all cases, the methods yield consistent
results and produce insightful visualizations, suggesting future develop-
ments and application in engineering problems.

Keywords: manifold learning, dimensionality reduction, vibration anal-
ysis

1 Introduction

Many problems in machine learning involve a –sometimes very– large number of
variables. Examples of such problems can be found in image classification, text
mining, socioeconomic data analysis or process condition monitoring, just to
mention a few. In most cases, relationships –or constraints– among the observed
variables arise from physical laws, spatial or geometrical restrictions, redundancy
between two or more variables, etc. that make the problem depend on a reduced
set of factors that explain the observed behavior. The computation of a minimal
set of variables that describe these factors makes it possible to develop e�cient
data visualization methods with a large explanatory power.

The problem of finding a reduced set of latent variables that explain a large
dimensional set is closely related to dimensionality reduction (DR). DR Tech-
niques have been used for a long time. Maybe one of the first and most ever used
?? This work has been financed by the spanish Ministry of Science and Education and
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.

? ? ? ?
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

{f1, B1}

{f2, B2}

{fn, Bn}

Dimensionality
Reduction visualization

k-th signal buffer

Computation
of band 
energies

feature
vector
dk

d1k

d2k

dnk
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ing a larger set of features, resulting in spectrum representations. Since every
projected point is associated to a vector of energies at frequency bands, glyphs
at every projected position can be generated from energies of a whole frequency
range, resulting in a visualization like figure 4, that was obtained for projec-
tions of the LTSA method showing harmonics from 25 Hz to 200 Hz, in steps
of 25 Hz. Such representation gives a comprehensive view of the global behavior
of the signal frequency content. Also, it can be seen how the spectrum shape
changes continuously from the di�erent conditions, revealing the 1D nature of
the vibration conditions induced in the experiments.

Fig. 4. Map of projected spectra using LTSA. Note that the projections are spatially
distributed so that harmonics smoothly change across the vibration conditions.

5 Conclusions

In this paper we have proposed a procedure to explore the dynamic behavior of a
process composed of a feature extraction stage based on the frequency domain,
and a DR mapping using manifold learning algorithms for visualization. For
many kinds of engineering systems, the method is based on the assumption that
variations on their operating condition originated by a low number of factors
influence in nearly the same way all frequencies of the signal spectrum, lead-
ing to highly structured data in a properly chosen feature space. The proposed
method is applied to vibration analysis of a faulty induction motor. The results
show that vibration data produced under two di�erent kinds of faults (electrical
and mechanical asymmetries) produce low dimensional structures in the feature

Projections are spatially distributed
so that harmonics smoothly change 
across the vibration conditions.

Map of projected spectra (LTSA)
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Abstract. This paper describes a procedure based on the use of manifold learning algorithms
to visualize periodic –or nearly periodic– time series produced by processes with di�erent under-
lying dynamics. The proposed approach is done in two steps: a feature extraction stage, where a
set of descriptors in the frequency domain is extracted, and a manifold learning stage that finds
low dimensional structures in the feature space and obtains projections on a low dimensional
space for visualization. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two kinds of asymmetries,
using four state-of-the-art manifold learning algorithms for comparison purposes. In all cases,
the methods yield consistent results and produce insightful visualizations, suggesting future
developments and application in engineering problems.
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.

1

1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.
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Conclusions.

Procedure to explore the dynamic be-
havior of a process composed of a fea-
ture extraction stage based on the fre-
quency domain, and a DR mapping us-
ing manifold learning algorithms for vi-
sualization.

The method is based on the assumption
that variations on their operating condi-
tion originated by a low number of fac-
tors influence in nearly the same way
all frequencies of the signal spectrum,
leading to highly structured data in a
properly chosen feature space.

Results show that vibration data pro-
duced under two di�erent kinds of faults
(electrical and mechanical asymmetries)
produce low dimensional structures in
the feature space that can be e⇥ciently
unfolded with state-of-the-art DR meth-
ods.

The resulting projections can be e⇥-
ciently represented using visualization
methods that provide an insightful view
of the changing dynamics, suggesting
the potential use of the proposed ap-
proach in many problems in which vi-
sualization of dynamics is required such
as fault detection or industrial process
data mining.

The method can be adapted for on-
line monitoring using nonlinear interpo-
lation between the input and projected
points to project new data.
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A more complete representation of the
process dynamics can be obtained in-
cluding a larger set of features, result-
ing in spectrum representations. Since
every projected point is associated to a
vector of energies at frequency bands,
glyphs at every projected position can
be generated from energies of a whole
frequency range, resulting in the visual-
ization shown in the left figure, that was
obtained for projections of the LTSA
method showing harmonics from 25 Hz
to 200 Hz, in steps of 25 Hz.
Such representation gives a comprehen-
sive view of the global behavior of the
signal frequency content. Also, it can be
seen how the spectrum shape changes
continuously from the di�erent condi-
tions, revealing the 1D nature of the vi-
bration conditions induced in the exper-
iments.
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process. In this work
four state-of-the-art methods, namely,
LTSA, LLE, L-Eig, and ISOMAP are
tested, showing that all produce insight-
ful results and lead to conceptually sim-
ilar conclusions.
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Color scale represents the values of two
dynamic features, namely, the energy in
the 25 ± 1 Hz band –which is specially
sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to elec-
trical imbalance. The four columns rep-
resent the four DR methods and the two
rows represent the features.
The results show that the four DR
methods yield similar conclusions. All
the methods show in separate regions
the four main conditions, namely,
Normal, Ecc, Imb-20 and Ecc+Imb. All
the projections also show, as expected,
smooth continuous transitions between
the normal and severe electrical im-
balance conditions –Imb-5, Imb-10,

Imb-15, Imb-var-1, Imb-var-2–,
showing up good consistency with the
nature of the fault.
Some minor di�erences can be observed
among the four methods. The com-
bined mechanical and electrical asym-
metry Ecc+Imb reveals a small 1D vari-
ation of its states in the LTSA, L-Eig
and ISOMAP methods, and is reflected
as a small cluster in LLE method.
Also, the continuous transition between
the di�erent degrees of electrical imbal-
ances is better described in the LTSA,
LLE and ISOMAP, while the L-Eig
method seems to show a dependency on
two factors.
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1�, 2�, · · · , n� multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2�– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X
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w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector
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Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.

3

In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process.

In this work four state-of-the-art meth-
ods, namely, LTSA, LLE, L-Eig, and
ISOMAP are tested, showing that all
produce insightful results and lead to
conceptually similar conclusions.
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Fig. 2: Block diagram of the SNE algorithm at the k-th iteration

2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x

i

is a vector with n features x

i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space
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Using the metric induced by the previously defined weighted norm, the input dis-
tances between input points x
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and x
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would be d
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⌦

. Let’s consider
the special case where the weight matrix ⌦ is diagonal ⌦ = diag(!1, !2, . . . , !n

),
where we have dropped the repeated index in !

qq

and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦

(k) the
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. Any variable q for which !
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= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦

(k) the

algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.

Interacting with the weights !

q

, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 , !q2 , . . . , !qK }. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
x

q1 = f

q1(t), x

q2 = f

q2(t), . . . , x

qK = f

qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-

ysis. Whenever the user modifies a single weight !

q

, the input distance pattern
d

ij

becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant di↵erences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {!

q1 , !q2 , . . . , !qM } of a group of M variables at the
same time to discover elements that di↵er significantly in any of the variables
x

q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
embedding in terms of both structural preservation and class separation. One
simple feature extension scheme, for instance, is to augment each element x with
an extended feature set x̄

c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector x

e

= [x, x̄

c(x)]. The DR projection of x

e

,
therefore contains class information, resulting in a more meaningful projection.
A user-driven variant of this approach, suitable for interaction, could involve a
weight factor �

x

e

(�) = [(1 � �)x, �x̄

c(x)]

letting the user modify �

(k) and projecting x

e

(�(k)) at iteration level, the user
can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.

3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
three axes a

x

(t), a

y

(t), a
z

(t)– and two phase currents i

R

(t), i
S

(t) were recorded
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reduction (iDR). The main idea of the paper relies on considering for visualization the intermediate results of non-
convex DR algorithms under changes on the metric of the input data space driven by the user. With an appropriate 
visualization interface, our approach allows the user to focus on the relationships among dynamically selected groups of 
variables, as well as to assess the impact of a single variable or groups of variables in the structure of the data.
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Abstract. In this work, we present a novel approach for data visualiza-
tion based on interactive dimensionality reduction (iDR). The main idea of
the paper relies on considering for visualization the intermediate results of
non-convex DR algorithms under changes on the metric of the input data
space driven by the user. With an appropriate visualization interface, our
approach allows the user to focus on the relationships among dynamically
selected groups of variables, as well as to assess the impact of a single
variable or groups of variables in the structure of the data.

1 Introduction

Many problems today involve the analysis of large datasets, which also contain
a very large number of variables from which the user should be able to find
meaningful relationships to acquire knowledge. The mere fact of obeying laws,
rules or restrictions arising from the problem domain, leads to dependencies that
make the intrinsic dimensionality of the data to be much smaller. Dimensionality
reduction (DR) algorithms –see [1] for a review– are able to find low dimensional
latent structures hidden in high dimensional data and produce a mapping on a
low dimensional space that preserves the underlying structure of data. They
are extremely useful tools in the field of visual analytics, since they provide an
advanced way for spatialization of data, allowing to create visual representa-
tions where spatial proximity between two items y

i

and y

j

in the visualization
represents similarity between x

i

and x

j

in a high dimensional space.
Another key ingredient in visual analytics is interaction. Interaction tech-

niques –zoom, pan, brushing, etc.– allow the user to reconfigure the visualization
to focus on the interesting aspects of data or to discard information that is ir-
relevant to the available knowledge of the user. In this paper we present a novel
approach for data visualization that suggests a low level integration of user in-
teraction into the DR computation and visualization process, by means of the
so-called interactive dimensionality reduction (iDR). In section 2 we describe
the iDR approach as a user-driven visualization of intermediate results of DR
algorithms, highlighting some of its potential applications, such as the analysis
of time-varying datasets or sensitivity analysis of data dependencies. In section
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Application demo: fault analysis of AC motor

Application interface with iDR user-driven modification of the input metric space
Javascript application using processingjs (http://processingjs.org)
Analysis of three vibration signals ax(t) ay(t) az(t) and two phase currents iR(t), iS(t)
of a 4kW 2 pole-pair asynchronous motor http://isa.uniovi.es/~idiaz/demos/iDR-vibracionesMotor/
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1⇥, 2⇥, · · · , n⇥ multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2⇥– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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advanced way for spatialization of data, allowing to create visual representa-
tions where spatial proximity between two items y

i

and y

j

in the visualization
represents similarity between x

i

and x

j

in a high dimensional space.
Another key ingredient in visual analytics is interaction. Interaction tech-

niques –zoom, pan, brushing, etc.– allow the user to reconfigure the visualization
to focus on the interesting aspects of data or to discard information that is ir-
relevant to the available knowledge of the user. In this paper we present a novel
approach for data visualization that suggests a low level integration of user in-
teraction into the DR computation and visualization process, by means of the
so-called interactive dimensionality reduction (iDR). In section 2 we describe
the iDR approach as a user-driven visualization of intermediate results of DR
algorithms, highlighting some of its potential applications, such as the analysis
of time-varying datasets or sensitivity analysis of data dependencies. In section

⇤The authors would like to thank financial support from the Spanish Ministry of Economy
(MINECO) and FEDER funds from the EU.

Manifold Learning for Visualization of
Vibrational States of a Rotating Machine

Ignacio Dı́az1, Abel A. Cuadrado1, Alberto B. Diez1, and Manuel Domı́nguez2
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Abstract. This paper describes a procedure based on the use of man-
ifold learning algorithms to visualize periodic –or nearly periodic– time
series produced by processes with di�erent underlying dynamics. The
proposed approach is done in two steps: a feature extraction stage, where
a set of descriptors in the frequency domain is extracted, and a mani-
fold learning stage that finds low dimensional structures in the feature
space and obtains projections on a low dimensional space for visualiza-
tion. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two
kinds of asymmetries, using four state-of-the-art manifold learning algo-
rithms for comparison purposes. In all cases, the methods yield consistent
results and produce insightful visualizations, suggesting future develop-
ments and application in engineering problems.
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1 Introduction

Many problems in machine learning involve a –sometimes very– large number of
variables. Examples of such problems can be found in image classification, text
mining, socioeconomic data analysis or process condition monitoring, just to
mention a few. In most cases, relationships –or constraints– among the observed
variables arise from physical laws, spatial or geometrical restrictions, redundancy
between two or more variables, etc. that make the problem depend on a reduced
set of factors that explain the observed behavior. The computation of a minimal
set of variables that describe these factors makes it possible to develop e�cient
data visualization methods with a large explanatory power.

The problem of finding a reduced set of latent variables that explain a large
dimensional set is closely related to dimensionality reduction (DR). DR Tech-
niques have been used for a long time. Maybe one of the first and most ever used
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-

6

Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-

3

C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

{f1, B1}

{f2, B2}

{fn, Bn}

Dimensionality
Reduction visualization

k-th signal buffer

Computation
of band 
energies

feature
vector
dk

d1k

d2k

dnk
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ing a larger set of features, resulting in spectrum representations. Since every
projected point is associated to a vector of energies at frequency bands, glyphs
at every projected position can be generated from energies of a whole frequency
range, resulting in a visualization like figure 4, that was obtained for projec-
tions of the LTSA method showing harmonics from 25 Hz to 200 Hz, in steps
of 25 Hz. Such representation gives a comprehensive view of the global behavior
of the signal frequency content. Also, it can be seen how the spectrum shape
changes continuously from the di�erent conditions, revealing the 1D nature of
the vibration conditions induced in the experiments.

Fig. 4. Map of projected spectra using LTSA. Note that the projections are spatially
distributed so that harmonics smoothly change across the vibration conditions.

5 Conclusions

In this paper we have proposed a procedure to explore the dynamic behavior of a
process composed of a feature extraction stage based on the frequency domain,
and a DR mapping using manifold learning algorithms for visualization. For
many kinds of engineering systems, the method is based on the assumption that
variations on their operating condition originated by a low number of factors
influence in nearly the same way all frequencies of the signal spectrum, lead-
ing to highly structured data in a properly chosen feature space. The proposed
method is applied to vibration analysis of a faulty induction motor. The results
show that vibration data produced under two di�erent kinds of faults (electrical
and mechanical asymmetries) produce low dimensional structures in the feature

Projections are spatially distributed
so that harmonics smoothly change 
across the vibration conditions.

Map of projected spectra (LTSA)
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Abstract. This paper describes a procedure based on the use of manifold learning algorithms
to visualize periodic –or nearly periodic– time series produced by processes with di�erent under-
lying dynamics. The proposed approach is done in two steps: a feature extraction stage, where a
set of descriptors in the frequency domain is extracted, and a manifold learning stage that finds
low dimensional structures in the feature space and obtains projections on a low dimensional
space for visualization. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two kinds of asymmetries,
using four state-of-the-art manifold learning algorithms for comparison purposes. In all cases,
the methods yield consistent results and produce insightful visualizations, suggesting future
developments and application in engineering problems.
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.

1

1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.
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Conclusions.

Procedure to explore the dynamic be-
havior of a process composed of a fea-
ture extraction stage based on the fre-
quency domain, and a DR mapping us-
ing manifold learning algorithms for vi-
sualization.

The method is based on the assumption
that variations on their operating condi-
tion originated by a low number of fac-
tors influence in nearly the same way
all frequencies of the signal spectrum,
leading to highly structured data in a
properly chosen feature space.

Results show that vibration data pro-
duced under two di�erent kinds of faults
(electrical and mechanical asymmetries)
produce low dimensional structures in
the feature space that can be e⇥ciently
unfolded with state-of-the-art DR meth-
ods.

The resulting projections can be e⇥-
ciently represented using visualization
methods that provide an insightful view
of the changing dynamics, suggesting
the potential use of the proposed ap-
proach in many problems in which vi-
sualization of dynamics is required such
as fault detection or industrial process
data mining.

The method can be adapted for on-
line monitoring using nonlinear interpo-
lation between the input and projected
points to project new data.
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A more complete representation of the
process dynamics can be obtained in-
cluding a larger set of features, result-
ing in spectrum representations. Since
every projected point is associated to a
vector of energies at frequency bands,
glyphs at every projected position can
be generated from energies of a whole
frequency range, resulting in the visual-
ization shown in the left figure, that was
obtained for projections of the LTSA
method showing harmonics from 25 Hz
to 200 Hz, in steps of 25 Hz.
Such representation gives a comprehen-
sive view of the global behavior of the
signal frequency content. Also, it can be
seen how the spectrum shape changes
continuously from the di�erent condi-
tions, revealing the 1D nature of the vi-
bration conditions induced in the exper-
iments.
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process. In this work
four state-of-the-art methods, namely,
LTSA, LLE, L-Eig, and ISOMAP are
tested, showing that all produce insight-
ful results and lead to conceptually sim-
ilar conclusions.
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Color scale represents the values of two
dynamic features, namely, the energy in
the 25 ± 1 Hz band –which is specially
sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to elec-
trical imbalance. The four columns rep-
resent the four DR methods and the two
rows represent the features.
The results show that the four DR
methods yield similar conclusions. All
the methods show in separate regions
the four main conditions, namely,
Normal, Ecc, Imb-20 and Ecc+Imb. All
the projections also show, as expected,
smooth continuous transitions between
the normal and severe electrical im-
balance conditions –Imb-5, Imb-10,

Imb-15, Imb-var-1, Imb-var-2–,
showing up good consistency with the
nature of the fault.
Some minor di�erences can be observed
among the four methods. The com-
bined mechanical and electrical asym-
metry Ecc+Imb reveals a small 1D vari-
ation of its states in the LTSA, L-Eig
and ISOMAP methods, and is reflected
as a small cluster in LLE method.
Also, the continuous transition between
the di�erent degrees of electrical imbal-
ances is better described in the LTSA,
LLE and ISOMAP, while the L-Eig
method seems to show a dependency on
two factors.
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1�, 2�, · · · , n� multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2�– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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A windowed DFT transform is used to
avoid Gibbs e�ect
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where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector
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where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process.

In this work four state-of-the-art meth-
ods, namely, LTSA, LLE, L-Eig, and
ISOMAP are tested, showing that all
produce insightful results and lead to
conceptually similar conclusions.
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Sensitivity analysis
Whenever the user increases a single weight “wq” the input 
distance pattern dij becomes more sensitive to variable q. Points 
(samples) showing significantly large deviations in variable q, will 
move apart upon changes in wq, thus revealing their dependency 
on variable q.

wq wq

3 we describe an application demo of the iDR idea for the visual analysis of fault
states in a rotating machine. Finally, section 4 concludes the paper.

2 The interactive Dimensionality Reduction approach

In the typical procedure to use DR algorithms for visual analytics, interaction
is often done after DR computation on the input dataset. The user sets up an
initial configuration for the DR algorithm, runs it until convergence and, after N

iterations, the output results are used to produce a visualization. The user may
later use interaction techniques to reconfigure this visualization or even decide to
run the DR algorithm again using another parameterization, starting the cycle
again –see for instance [2]. This approach can be thought of as a batch mode

interaction scheme for DR visual analytics.

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

Fig. 1: Batch mode interaction scheme (left) vs. the iDR approach (right)

However, interaction can go far beyond this approach, allowing the user to
take full control of the DR behavior by means of iterative reconfiguration of

computational algorithms [3]. The right picture in Fig. 1, shows the main idea
of this approach for DR analysis, where the intermediate results are used to
produce a visualization at each iteration. The result is a dynamically changing
visualization that allows the user to track changes in the resulting projection
under changes in the problem formulation, such as, for instance, user-driven
changes of the metric in the input space (e.g. by modifying the weights of the
input variables), or under time-varying input data (e.g. in dynamic processes
where the elements of the input dataset change with time). Despite this approach
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algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.
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, the user can explore several kinds of non-
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a set of K nonzero weights {!
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q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.
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c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector x
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therefore contains class information, resulting in a more meaningful projection.
A user-driven variant of this approach, suitable for interaction, could involve a
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letting the user modify �

(k) and projecting x

e

(�(k)) at iteration level, the user
can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.
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A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
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2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x

i

is a vector with n features x

i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space
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instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦
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is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦
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algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.

Interacting with the weights !
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, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 , !q2 , . . . , !qK }. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
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qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-
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becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant di↵erences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {!

q1 , !q2 , . . . , !qM } of a group of M variables at the
same time to discover elements that di↵er significantly in any of the variables
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q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
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3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-
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Abstract. In this work, we present a novel approach for data visualiza-
tion based on interactive dimensionality reduction (iDR). The main idea of
the paper relies on considering for visualization the intermediate results of
non-convex DR algorithms under changes on the metric of the input data
space driven by the user. With an appropriate visualization interface, our
approach allows the user to focus on the relationships among dynamically
selected groups of variables, as well as to assess the impact of a single
variable or groups of variables in the structure of the data.

1 Introduction

Many problems today involve the analysis of large datasets, which also contain
a very large number of variables from which the user should be able to find
meaningful relationships to acquire knowledge. The mere fact of obeying laws,
rules or restrictions arising from the problem domain, leads to dependencies that
make the intrinsic dimensionality of the data to be much smaller. Dimensionality
reduction (DR) algorithms –see [1] for a review– are able to find low dimensional
latent structures hidden in high dimensional data and produce a mapping on a
low dimensional space that preserves the underlying structure of data. They
are extremely useful tools in the field of visual analytics, since they provide an
advanced way for spatialization of data, allowing to create visual representa-
tions where spatial proximity between two items y

i

and y

j

in the visualization
represents similarity between x

i

and x

j

in a high dimensional space.
Another key ingredient in visual analytics is interaction. Interaction tech-

niques –zoom, pan, brushing, etc.– allow the user to reconfigure the visualization
to focus on the interesting aspects of data or to discard information that is ir-
relevant to the available knowledge of the user. In this paper we present a novel
approach for data visualization that suggests a low level integration of user in-
teraction into the DR computation and visualization process, by means of the
so-called interactive dimensionality reduction (iDR). In section 2 we describe
the iDR approach as a user-driven visualization of intermediate results of DR
algorithms, highlighting some of its potential applications, such as the analysis
of time-varying datasets or sensitivity analysis of data dependencies. In section
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Application demo: fault analysis of AC motor

Application interface with iDR user-driven modification of the input metric space
Javascript application using processingjs (http://processingjs.org)
Analysis of three vibration signals ax(t) ay(t) az(t) and two phase currents iR(t), iS(t)
of a 4kW 2 pole-pair asynchronous motor http://isa.uniovi.es/~idiaz/demos/iDR-vibracionesMotor/
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1⇥, 2⇥, · · · , n⇥ multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2⇥– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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tions where spatial proximity between two items y

i

and y

j

in the visualization
represents similarity between x

i

and x

j

in a high dimensional space.
Another key ingredient in visual analytics is interaction. Interaction tech-

niques –zoom, pan, brushing, etc.– allow the user to reconfigure the visualization
to focus on the interesting aspects of data or to discard information that is ir-
relevant to the available knowledge of the user. In this paper we present a novel
approach for data visualization that suggests a low level integration of user in-
teraction into the DR computation and visualization process, by means of the
so-called interactive dimensionality reduction (iDR). In section 2 we describe
the iDR approach as a user-driven visualization of intermediate results of DR
algorithms, highlighting some of its potential applications, such as the analysis
of time-varying datasets or sensitivity analysis of data dependencies. In section
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Abstract. This paper describes a procedure based on the use of man-
ifold learning algorithms to visualize periodic –or nearly periodic– time
series produced by processes with di�erent underlying dynamics. The
proposed approach is done in two steps: a feature extraction stage, where
a set of descriptors in the frequency domain is extracted, and a mani-
fold learning stage that finds low dimensional structures in the feature
space and obtains projections on a low dimensional space for visualiza-
tion. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two
kinds of asymmetries, using four state-of-the-art manifold learning algo-
rithms for comparison purposes. In all cases, the methods yield consistent
results and produce insightful visualizations, suggesting future develop-
ments and application in engineering problems.
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1 Introduction

Many problems in machine learning involve a –sometimes very– large number of
variables. Examples of such problems can be found in image classification, text
mining, socioeconomic data analysis or process condition monitoring, just to
mention a few. In most cases, relationships –or constraints– among the observed
variables arise from physical laws, spatial or geometrical restrictions, redundancy
between two or more variables, etc. that make the problem depend on a reduced
set of factors that explain the observed behavior. The computation of a minimal
set of variables that describe these factors makes it possible to develop e�cient
data visualization methods with a large explanatory power.

The problem of finding a reduced set of latent variables that explain a large
dimensional set is closely related to dimensionality reduction (DR). DR Tech-
niques have been used for a long time. Maybe one of the first and most ever used
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

{f1, B1}

{f2, B2}

{fn, Bn}

Dimensionality
Reduction visualization

k-th signal buffer

Computation
of band 
energies

feature
vector
dk

d1k

d2k

dnk
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ing a larger set of features, resulting in spectrum representations. Since every
projected point is associated to a vector of energies at frequency bands, glyphs
at every projected position can be generated from energies of a whole frequency
range, resulting in a visualization like figure 4, that was obtained for projec-
tions of the LTSA method showing harmonics from 25 Hz to 200 Hz, in steps
of 25 Hz. Such representation gives a comprehensive view of the global behavior
of the signal frequency content. Also, it can be seen how the spectrum shape
changes continuously from the di�erent conditions, revealing the 1D nature of
the vibration conditions induced in the experiments.

Fig. 4. Map of projected spectra using LTSA. Note that the projections are spatially
distributed so that harmonics smoothly change across the vibration conditions.

5 Conclusions

In this paper we have proposed a procedure to explore the dynamic behavior of a
process composed of a feature extraction stage based on the frequency domain,
and a DR mapping using manifold learning algorithms for visualization. For
many kinds of engineering systems, the method is based on the assumption that
variations on their operating condition originated by a low number of factors
influence in nearly the same way all frequencies of the signal spectrum, lead-
ing to highly structured data in a properly chosen feature space. The proposed
method is applied to vibration analysis of a faulty induction motor. The results
show that vibration data produced under two di�erent kinds of faults (electrical
and mechanical asymmetries) produce low dimensional structures in the feature

Projections are spatially distributed
so that harmonics smoothly change 
across the vibration conditions.

Map of projected spectra (LTSA)
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Abstract. This paper describes a procedure based on the use of manifold learning algorithms
to visualize periodic –or nearly periodic– time series produced by processes with di�erent under-
lying dynamics. The proposed approach is done in two steps: a feature extraction stage, where a
set of descriptors in the frequency domain is extracted, and a manifold learning stage that finds
low dimensional structures in the feature space and obtains projections on a low dimensional
space for visualization. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two kinds of asymmetries,
using four state-of-the-art manifold learning algorithms for comparison purposes. In all cases,
the methods yield consistent results and produce insightful visualizations, suggesting future
developments and application in engineering problems.
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.

1

1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector
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Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.
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Conclusions.

Procedure to explore the dynamic be-
havior of a process composed of a fea-
ture extraction stage based on the fre-
quency domain, and a DR mapping us-
ing manifold learning algorithms for vi-
sualization.

The method is based on the assumption
that variations on their operating condi-
tion originated by a low number of fac-
tors influence in nearly the same way
all frequencies of the signal spectrum,
leading to highly structured data in a
properly chosen feature space.

Results show that vibration data pro-
duced under two di�erent kinds of faults
(electrical and mechanical asymmetries)
produce low dimensional structures in
the feature space that can be e⇥ciently
unfolded with state-of-the-art DR meth-
ods.

The resulting projections can be e⇥-
ciently represented using visualization
methods that provide an insightful view
of the changing dynamics, suggesting
the potential use of the proposed ap-
proach in many problems in which vi-
sualization of dynamics is required such
as fault detection or industrial process
data mining.

The method can be adapted for on-
line monitoring using nonlinear interpo-
lation between the input and projected
points to project new data.
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A more complete representation of the
process dynamics can be obtained in-
cluding a larger set of features, result-
ing in spectrum representations. Since
every projected point is associated to a
vector of energies at frequency bands,
glyphs at every projected position can
be generated from energies of a whole
frequency range, resulting in the visual-
ization shown in the left figure, that was
obtained for projections of the LTSA
method showing harmonics from 25 Hz
to 200 Hz, in steps of 25 Hz.
Such representation gives a comprehen-
sive view of the global behavior of the
signal frequency content. Also, it can be
seen how the spectrum shape changes
continuously from the di�erent condi-
tions, revealing the 1D nature of the vi-
bration conditions induced in the exper-
iments.
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process. In this work
four state-of-the-art methods, namely,
LTSA, LLE, L-Eig, and ISOMAP are
tested, showing that all produce insight-
ful results and lead to conceptually sim-
ilar conclusions.
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Color scale represents the values of two
dynamic features, namely, the energy in
the 25 ± 1 Hz band –which is specially
sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to elec-
trical imbalance. The four columns rep-
resent the four DR methods and the two
rows represent the features.
The results show that the four DR
methods yield similar conclusions. All
the methods show in separate regions
the four main conditions, namely,
Normal, Ecc, Imb-20 and Ecc+Imb. All
the projections also show, as expected,
smooth continuous transitions between
the normal and severe electrical im-
balance conditions –Imb-5, Imb-10,

Imb-15, Imb-var-1, Imb-var-2–,
showing up good consistency with the
nature of the fault.
Some minor di�erences can be observed
among the four methods. The com-
bined mechanical and electrical asym-
metry Ecc+Imb reveals a small 1D vari-
ation of its states in the LTSA, L-Eig
and ISOMAP methods, and is reflected
as a small cluster in LLE method.
Also, the continuous transition between
the di�erent degrees of electrical imbal-
ances is better described in the LTSA,
LLE and ISOMAP, while the L-Eig
method seems to show a dependency on
two factors.
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1�, 2�, · · · , n� multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2�– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
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where din represents the energy in the
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quency fi and width Bi–, for window
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process.

In this work four state-of-the-art meth-
ods, namely, LTSA, LLE, L-Eig, and
ISOMAP are tested, showing that all
produce insightful results and lead to
conceptually similar conclusions.
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Sensitivity analysis
Whenever the user increases a single weight “wq” the input 
distance pattern dij becomes more sensitive to variable q. Points 
(samples) showing significantly large deviations in variable q, will 
move apart upon changes in wq, thus revealing their dependency 
on variable q.

wq wq

3 we describe an application demo of the iDR idea for the visual analysis of fault
states in a rotating machine. Finally, section 4 concludes the paper.

2 The interactive Dimensionality Reduction approach

In the typical procedure to use DR algorithms for visual analytics, interaction
is often done after DR computation on the input dataset. The user sets up an
initial configuration for the DR algorithm, runs it until convergence and, after N

iterations, the output results are used to produce a visualization. The user may
later use interaction techniques to reconfigure this visualization or even decide to
run the DR algorithm again using another parameterization, starting the cycle
again –see for instance [2]. This approach can be thought of as a batch mode

interaction scheme for DR visual analytics.

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

Fig. 1: Batch mode interaction scheme (left) vs. the iDR approach (right)

However, interaction can go far beyond this approach, allowing the user to
take full control of the DR behavior by means of iterative reconfiguration of

computational algorithms [3]. The right picture in Fig. 1, shows the main idea
of this approach for DR analysis, where the intermediate results are used to
produce a visualization at each iteration. The result is a dynamically changing
visualization that allows the user to track changes in the resulting projection
under changes in the problem formulation, such as, for instance, user-driven
changes of the metric in the input space (e.g. by modifying the weights of the
input variables), or under time-varying input data (e.g. in dynamic processes
where the elements of the input dataset change with time). Despite this approach
is still rather unexplored, a few related works can be found, as an interactive
version of PCA [4] and an interactive learning of distance functions [5].

2.1 Applications of the iDR approach

To allow interaction, we shall consider iterative algorithms, such as Stochastic
Neighbor Embedding (SNE) [6] or the Neigborhood Retrieval Visualizer (NeRV)
[7]. For simplicity, let’s consider a block diagram of the SNE algorithm for the
k-th iteration –see Fig. 2. Some of the inputs –data or parameters– to the
algorithm can change or be changed by the user at each iteration.
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3.   Interactive incorporation of class knowledge
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algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.

Interacting with the weights !

q

, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 , !q2 , . . . , !qK }. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
x

q1 = f

q1(t), x

q2 = f

q2(t), . . . , x

qK = f

qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-

ysis. Whenever the user modifies a single weight !

q

, the input distance pattern
d

ij

becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant di↵erences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {!

q1 , !q2 , . . . , !qM } of a group of M variables at the
same time to discover elements that di↵er significantly in any of the variables
x

q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
embedding in terms of both structural preservation and class separation. One
simple feature extension scheme, for instance, is to augment each element x with
an extended feature set x̄

c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector x

e
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c(x)]. The DR projection of x
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,
therefore contains class information, resulting in a more meaningful projection.
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weight factor �
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letting the user modify �

(k) and projecting x

e

(�(k)) at iteration level, the user
can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.

3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
three axes a

x

(t), a
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(t), a
z

(t)– and two phase currents i

R

(t), i
S

(t) were recorded
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To express this optimization from a computational framework, assuming

small time increments �t, equation (1) can be approximated into the discrete

form �y/�t = f(y,u), that is, �y = �t · f(y,u), which turns into

y(t + 1) = y(t) + �t · f(y(t),u(t)) (2)

In the last expression it is made evident that, at every step, the DR algorithm

takes an initial projection y(t) and evolves to a new (updated) projection y(t+1).

It can also be noted that equation (2) conceptually resembles a gradient descent

approach, that is at the heart of many non-convex DR algorithms (see e.g. [10]).
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Steering DR optimization parameters. There exists a wide variety of algo-

rithms in DR literature [11]. Most parameters in DR algorithms are related to
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Fig. 1: Model describing the coupled interaction between the user and the DR
algorithm

classification is looked for, the best projection happens for � = 1, projecting
all members of each class on one single point (their representative codebook)
respectively.

4 A model of interaction between DR and the user

During an interactive DR session, the user’s knowledge and the DR visualization
evolve in a coupled manner, hopefully resulting in an increase of the user’s
knowledge. Inspired by the model described in [2], the knowledge of the user
evolves depending on the visualization and the current knowledge state as k̇ =
g(k,y). In parallel, based on the current state of the user’s knowledge k and
the current projection state y, the user steers the DR configuration parameters
as w = h(k,y) to recompute the projection, according to new criteria that
better meet the user’s interest –for instance, depending on the problem needs,
the user may wish to tune the DR algorithm to favour intrusions or extrusions
[14]. In control theory, the latter equation can be seen as a control law, since
it defines an input value u (depending on w) that manipulates the dynamical
system, according to some target (here, maximizing user’s knowledge), based on
the information of the current system state. This results in a coupled system
–see Fig. 1– containing the current user’s knowledge and the current projection,
that models the interaction between the user and the DR algorithm, whose final
result (k0

,y

0) mainly depends on the input data x to be analyzed, assuming that
the user is not influenced by other factors. The quality of the final knowledge
k

0 depends on a good design exploiting the synergy between the algorithm f()
the user’s mind capabilities g() and the interaction h().

5 Conclusion

In this paper we have presented a state-space approach to provide a concep-
tual model of the iDR dynamics. We show that the dynamics of iDR can be
considered as a particular case of the more general state-space formulation of
dynamic systems, provided that we consider the “state” of the iDR system as a
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function J(y,u) that depends on the projections y, the input data x and the
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given context u.

To express this optimization from a computational framework, assuming
small time increments �t, equation (1) can be approximated into the discrete
form �y/�t = f(y,u), that is, �y = �t · f(y,u), which turns into

y(t + 1) = y(t) + �t · f(y(t),u(t)) (2)

In the last expression it is made evident that, at every step, the DR algorithm
takes an initial projection y(t) and evolves to a new (updated) projection y(t+1).
It can also be noted that equation (2) conceptually resembles a gradient descent
approach, that is at the heart of many non-convex DR algorithms (see e.g. [10]).
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Under the hypothesis of a stable algorithm, the state equation (1) reaches a
steady state for ẏ = 0 resulting in the following condition expressed in implicit
form

0 = f(y0
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The previous expression states that the context u

0 forces a final projection y

0

that results from a new equilibrium state, although such projection might not
be unique. An important consequence of equation (3) is that a change in the
context u

0 may induce a change in the steady-state projection y

0. This fact is
indeed the key to bring interactivity into the DR visualization.

A further consequence of this approach is the possibility to analyze the DR
from a dynamic point of view. Small variations around the equilibrium point 0
allow us to consider the linear model ẏ = Ay + Bu, which paves the way for
rigorous local analysis of stability and dynamical behavior of iDR convergence,
based on eigenmode analysis of the state matrix A = @ f(y,u)/@y|0.

3 Context-based steering of DR projections

As seen in the previous section, the context u includes: a) the input dataset X,
and b) cost-function specific parameters w = (w1
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modify. Both components can vary during the algorithm execution, resulting in
di↵erent interactive DR operation modes.

Tracking time-varying input datasets. On one side, the input dataset can
be composed of time varying data X(t) = {x1(t), . . . ,xQ(t)}. In this case, the re-
sulting dynamical model contains a time varying input u = u(t), thereby adding
a forced dynamics component that drives the result. In case that x reaches a
steady state x

0 for t ! 1, the DR algorithm converges to 0 = f(y0
, (x0

,w)),
resulting in a final projection dependent on the steady-state input dataset x

0

and the selected DR optimization parameters w. Time-varying input data arise
in analyses where a group of multivariate items evolve in time. Many real sit-
uations might conform to this formulation, such as the analysis of groups of
patients during epidemics, maybe with control subgroups under experimental
treatments, analysis of evolving social networks composed of many users, each
defined by several parameters, or analysis of electric power networks dynamics
under failures or special load conditions. The result of this is a dynamic DR
projection whose items are continuously rearranged according to their evolving
similarities. Thus, if an item xi undergoes at time t a significant change in its
relationships to the other items with respect to time t� 1, its projection yi will
move apart revealing a change condition.

Steering DR optimization parameters. There exists a wide variety of algo-
rithms in DR literature [11]. Most parameters in DR algorithms are related to
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projection whose items are continuously rearranged according to their evolving
similarities. Thus, if an item xi undergoes at time t a significant change in its
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assuming the system is locally stable,
this implies that for a given x0 
DR projection converges to y0 
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the way the cost function is evaluated. Depending on the algorithm, one group
of these parameters typically include neighborhood function parameters, such as
width factors � of gaussian components, number of neighbors k or perplexity P

–see e.g. [10]. Another group of cost-function related parameters are those af-
fecting the computation of the distance metrics between points. As described in
[8], a simple but powerful interaction feature can stem from user-driven change
in the input space metric ⌦. Let’s consider the following weighted norm in the
input data space

kxi � xjk2
⌦

:=
X

r

X

s

(xr
i � x

r
j)!rs(x

s
i � x

s
j).

Using the metric induced by the previously defined weighted norm, the dis-
tances between input points xi and xj would be dij = kxi � xjk⌦. In this
paper, we shall consider the special case where the weight matrix ⌦ is diago-
nal ⌦ = diag(w1, w2, . . . , wn), where wq = !qq. Interactive user-driven changes
in these weights wi can provide insight into di↵erent kinds of analysis, includ-
ing –see [8]– correlation analysis, by interactively weighting subsets of variables
q1, q2, ...qK –setting the remaining weights to zero–, whereby the emergence of
any ordered patterns in the resulting projection reveals dependencies among
xq1 , xq2 , . . . , xqK . Similarly, the user can do sensitivity analysis by changing one
or M weights {wq1 , wq2 , . . . , wqM } at the same time; the points that move in the
“live” projection reveal elements that di↵er significantly in any of the variables
xq1 , xq2 , . . . , xqM .

Introducing class knowledge. Adding extra attributes with known class
information in the input data matrix gives the user the posibility to group items
according to their class memberships in the projection, thereby allowing for a
supervised DR. In its most basic approach, class attributes may consist of one or
more columns with di↵erent discrete values for each class (e.g. using a di↵erent
integer or even a 2D position for each class). Feature space transformations [12]
allow improving the quality of an existing embedding in terms of both structural
preservation and class separation. One simple feature extension scheme, for
instance, is to augment each element x with an extended feature set x̄c(x) equal
to the centroid of the class c(x) it belongs to, thus forming an extended vector
xe = [x, x̄c(x)]. The DR projection of xe, therefore contains class information,
resulting in a more meaningful projection. A user-driven variant of this approach
suitable for interaction proposed in [13], could involve a weight factor �

xe(�) = [(1 � �)x, �x̄c(x)].

This approach can be seen as a particular case of weighted metrics on the ex-
tended attribute vectors xe = [x, x̄c(x)] using wi = � for the original attributes
x and wj = 1 � � for the class attributes x̄c(x). Letting the user modify � at
iteration level, the user can interactively control the balance between class sep-
aration and structural preservation of the original dataset to gain insight and
find connections between data structure and class knowledge. Note that if only

the way the cost function is evaluated. Depending on the algorithm, one group

of these parameters typically include neighborhood function parameters, such as

width factors � of gaussian components, number of neighbors k or perplexity P

–see e.g. [10]. Another group of cost-function related parameters are those af-

fecting the computation of the distance metrics between points. As described in

[8], a simple but powerful interaction feature can stem from user-driven change

in the input space metric ⌦. Let’s consider the following weighted norm in the
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Using the metric induced by the previously defined weighted norm, the dis-

tances between input points xi and xj would be dij = kxi � xjk⌦. In this

paper, we shall consider the special case where the weight matrix ⌦ is diago-

nal ⌦ = diag(w1, w2, . . . , wn), where wq = !qq. Interactive user-driven changes

in these weights wi can provide insight into di↵erent kinds of analysis, includ-

ing –see [8]– correlation analysis, by interactively weighting subsets of variables

q1, q2, ...qK –setting the remaining weights to zero–, whereby the emergence of

any ordered patterns in the resulting projection reveals dependencies among

xq1 , xq2 , . . . , xqK . Similarly, the user can do sensitivity analysis by changing one

or M weights {wq1 , wq2 , . . . , wqM } at the same time; the points that move in the

“live” projection reveal elements that di↵er significantly in any of the variables

xq1 , xq2 , . . . , xqM .

Introducing class knowledge. Adding extra attributes with known class

information in the input data matrix gives the user the posibility to group items

according to their class memberships in the projection, thereby allowing for a

supervised DR. In its most basic approach, class attributes may consist of one or

more columns with di↵erent discrete values for each class (e.g. using a di↵erent

integer or even a 2D position for each class). Feature space transformations [12]

allow improving the quality of an existing embedding in terms of both structural

preservation and class separation. One simple feature extension scheme, for

instance, is to augment each element x with an extended feature set

¯

xc(x) equal

to the centroid of the class c(x) it belongs to, thus forming an extended vector
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¯

xc(x)]. The DR projection of xe, therefore contains class information,

resulting in a more meaningful projection. A user-driven variant of this approach
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xe(�) = [(1 � �)x, �

¯

xc(x)].

This approach can be seen as a particular case of weighted metrics on the ex-

tended attribute vectors xe = [x,

¯

xc(x)] using wi = � for the original attributes

x and wj = 1 � � for the class attributes

¯

xc(x). Letting the user modify � at

iteration level, the user can interactively control the balance between class sep-

aration and structural preservation of the original dataset to gain insight and

find connections between data structure and class knowledge. Note that if only

user-steerable λ

introducing class knowledge steering DR optimization parameters
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theory. The expected benefits are twofold: 1) suggesting new ways to import well
known ideas from the state-space theory and 2) providing a conceptual model
for user interaction in iDR, that can be easily adopted for future iML tools.

2 Conceptual formulation of interactive DR

Configuration space. Let P = {pi}i=1,...,Q be a set of points pi = (p1i , ..., p
n
i ) 2

Rn. We define the configuration vector of set P as the vector composed of the
nQ scalar coordinates of all the points pi, that will be denoted as
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The configuration vector p is a single point of the configuration space RnQ that
uniquely defines the spatial layout of the points pi.

Formulation in state-space theory. Let’s consider a DR algorithm that
takes a set of points X = {xi}i=1,...,Q, being xi 2 RD, in the input data space,
and yields a set of projections Y = {yi}i=1,...,Q, being yi 2 Rd, in a low-
dimensional visualization space V 2 Rd. Considered as systems that evolve in
time during the convergence stage, DR algorithms can be viewed as dynamical

systems. A convenient description of DR dynamic behavior is the following
state-space equation

ẏ = f(y,u) (1)

whose state is the projection configuration vector, defined as
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that describes the current projections yi, and its input or exogenous variable is
the context configuration vector
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which is composed of the input data points xi, plus the set of adjustable param-
eters w

1
, w

2
, ..., w

m specific to the DR algorithm. The DR algorithm has a cost
function J(y,u) that depends on the projections y, the input data x and the
DR parameters w. During the DR convergence J is optimized for y, within a
given context u.

To express this optimization from a computational framework, assuming
small time increments �t, equation (1) can be approximated into the discrete
form �y/�t = f(y,u), that is, �y = �t · f(y,u), which turns into

y(t + 1) = y(t) + �t · f(y(t),u(t)) (2)

In the last expression it is made evident that, at every step, the DR algorithm
takes an initial projection y(t) and evolves to a new (updated) projection y(t+1).
It can also be noted that equation (2) conceptually resembles a gradient descent
approach, that is at the heart of many non-convex DR algorithms (see e.g. [10]).

y(t)

ẏ(t)

In this case, the term f(y,u) can be interpreted as the gradient of the cost
function

f(y,u) ⇡ @J(y,u)

@y

Under the hypothesis of a stable algorithm, the state equation (1) reaches a
steady state for ẏ = 0 resulting in the following condition expressed in implicit
form

0 = f(y0
,u

0) (3)

The previous expression states that the context u

0 forces a final projection y

0

that results from a new equilibrium state, although such projection might not
be unique. An important consequence of equation (3) is that a change in the
context u

0 may induce a change in the steady-state projection y

0. This fact is
indeed the key to bring interactivity into the DR visualization.

A further consequence of this approach is the possibility to analyze the DR
from a dynamic point of view. Small variations around the equilibrium point 0
allow us to consider the linear model ẏ = Ay + Bu, which paves the way for
rigorous local analysis of stability and dynamical behavior of iDR convergence,
based on eigenmode analysis of the state matrix A = @ f(y,u)/@y|0.

3 Context-based steering of DR projections

As seen in the previous section, the context u includes: a) the input dataset X,
and b) cost-function specific parameters w = (w1

, w

2
, ..., w

m) that the user can
modify. Both components can vary during the algorithm execution, resulting in
di↵erent interactive DR operation modes.

Tracking time-varying input datasets. On one side, the input dataset can
be composed of time varying data X(t) = {x1(t), . . . ,xQ(t)}. In this case, the re-
sulting dynamical model contains a time varying input u = u(t), thereby adding
a forced dynamics component that drives the result. In case that x reaches a
steady state x

0 for t ! 1, the DR algorithm converges to 0 = f(y0
, (x0

,w)),
resulting in a final projection dependent on the steady-state input dataset x

0

and the selected DR optimization parameters w. Time-varying input data arise
in analyses where a group of multivariate items evolve in time. Many real sit-
uations might conform to this formulation, such as the analysis of groups of
patients during epidemics, maybe with control subgroups under experimental
treatments, analysis of evolving social networks composed of many users, each
defined by several parameters, or analysis of electric power networks dynamics
under failures or special load conditions. The result of this is a dynamic DR
projection whose items are continuously rearranged according to their evolving
similarities. Thus, if an item xi undergoes at time t a significant change in its
relationships to the other items with respect to time t� 1, its projection yi will
move apart revealing a change condition.

Steering DR optimization parameters. There exists a wide variety of algo-
rithms in DR literature [11]. Most parameters in DR algorithms are related to
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rigorous local analysis of stability and dynamical behavior of iDR convergence,
based on eigenmode analysis of the state matrix A = @ f(y,u)/@y|0.

3 Context-based steering of DR projections

As seen in the previous section, the context u includes: a) the input dataset X,
and b) cost-function specific parameters w = (w1

, w

2
, ..., w

m) that the user can
modify. Both components can vary during the algorithm execution, resulting in
di↵erent interactive DR operation modes.

Tracking time-varying input datasets. On one side, the input dataset can
be composed of time varying data X(t) = {x1(t), . . . ,xQ(t)}. In this case, the re-
sulting dynamical model contains a time varying input u = u(t), thereby adding
a forced dynamics component that drives the result. In case that x reaches a
steady state x

0 for t ! 1, the DR algorithm converges to 0 = f(y0
, (x0

,w)),
resulting in a final projection dependent on the steady-state input dataset x

0

and the selected DR optimization parameters w. Time-varying input data arise
in analyses where a group of multivariate items evolve in time. Many real sit-
uations might conform to this formulation, such as the analysis of groups of
patients during epidemics, maybe with control subgroups under experimental
treatments, analysis of evolving social networks composed of many users, each
defined by several parameters, or analysis of electric power networks dynamics
under failures or special load conditions. The result of this is a dynamic DR
projection whose items are continuously rearranged according to their evolving
similarities. Thus, if an item xi undergoes at time t a significant change in its
relationships to the other items with respect to time t� 1, its projection yi will
move apart revealing a change condition.

Steering DR optimization parameters. There exists a wide variety of algo-
rithms in DR literature [11]. Most parameters in DR algorithms are related to

During DR algorithm execution
the state (i.e. the whole projection set)

evolves until convergence

The motion law in the projection CS depends 
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The original dataset and class 
centroids in the input space can be 
combined into an extended input 
space of 2n dimensions.  A user 
steered parameter λ can be used to 
interactively weight the subspace of 
the original dataset against the 
subspace of the centroids.

The user can interactively tune 
the weights ωii of the metric used 
to compute the point distances.

e.g. with nonzero 
weights for pairwise 
(possibly nonlinear) 
correlated variables, 
a 1D manifold 
projection is 
obtained 

Potential applications

Comparison of DR algorithms

Numerical characterization of DR algorithms dynamics byK dom-

inant eigenmodes could potentially be used for comparing algo-

rithms according to their dynamical behavior, allowing also to

elaborate taxonomies.

Improvement of DR algorithms

A better understanding of the dynamics of DR algorithms and the

possibility to explicitly determine the local dynamical behavior,

paves the way for strategies to improve the global stability using,

for instance, adaptive tuning of DR algorithms

Potential applications

Existence of convergence (stability)

The existence of convergence checking for the stability condition

Re(�i) < 0 for all eigenvalues.

Eigenvalue tracking could be used to visualize the influence of con-

text (e.g. algorithm parameters or even input data configurations)

in stability

A =
@f(y,u)

@y

����
o

Analysis of local dynamics of DR

The state space approach allows to analyze the DR from a dy-

namic point of view. Small variations around the equilibrium

point 0 allow us to consider the linear model

˙y = Ay +Bu

This paves the way for rigorous local analysis of stability and dy-

namical behavior of iDR convergence, based on eigenmode analy-

sis of the state matrix

A = @ f(y,u)/@y|0
.
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