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Abstract
By leveraging the SOM algorithm and the extensive epigenomic data
from TCGA, this work aims to suggest a valid approach to explore
the relationships between epigenetic alterations and PCPG pathogene-
sis. Additionally, the methodological approach presented here lays the
foundation for a potentially valuable analysis tool that can be applied
to other cancer types and epigenetic research.

Data preparation
• The methylation data under analysis involves a large dataset
X ∈ Rn,m with n = 391529 methylation levels (β values) of CpG
sites, and m = 187 PCPG samples from the TCGA database a.

• Prior to SOM training, the β values were transformed using rank
normalization to obtain a uniform equalized histogram of methy-
lation values.

aGDC TCGA Pheochromocytoma & Paraganglioma (PCPG); Illumina Hu-
man Methylation 450 DNA methylation (available at Xenabrowser https://
xenabrowser.net/datapages/)

Batch SOM and bootstrap training
• The SOM training algorithm involves the computation of dis-

tances from the n input samples to the S prototypes.

• When n is very large —in methylation data n may be in the order
of 105 CpG sites— the SOM algorithm becomes computationally
unaffordable.

• In this work, the batch version, more stable and computationally
efficient was used to obtain the prototypes mi.

• To overcome memory requirements, the prototypes can be up-
dated at each epoch for batches of a smaller size nb, by ran-
domly sampling with replacement from the original dataset, and
then averaged with an exponentially weighted moving average
(EWMA):

c(k) = argmin
i

∥x(k)−mi(t)∥

m′
i(t) =

∑nb

k=1 hc(k)i(t) · x(k)∑nb

k=1 hc(k)i(t)

mi(t+ 1) = λmi(t) + (1− λ)m′
i(t)

For a sufficiently long number of epochs, this bootstrap approach
accurately approximates the input data distribution and yields
a stable convergence allowing to trade memory demand for iter-
ations in large data samples.

Conclusions
• We have proposed using SOM to visualize and reduce the dimen-

sionality of methylation data from PCPG tumors.

• The SOM component planes act as methylation signatures that
revealed relationships between the tumors’ epigenetic patterns
and key genetic mutations like VHL, SDHx, and EPAS1.

• This SOM-based approach relating epigenetic and genetic data
allows identifying connections between the dysregulated methy-
lation landscapes and genetic signatures of PCPG.

• Our approach demonstrates the potential of SOM analyses to
gain insights into the interplay of epigenetics and genetics in
cancer, with potential applications in biomarker discovery and
personalized treatment development.

• The possibility to represent tumors with mutations or other phe-
notypes on epigenetic behavior maps with the proposed approach
can help in elucidating PCPG molecular heterogeneity and sub-
types, guiding targeted therapies.
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DNA methylation planes for 187 tumors

SOM of DNA methylation data

• The training of the SOM is done
shifting the usual role of samples and
attributes, so the bases are consid-
ered as samples and the tumors are
considered as attributes.

• We trained a 50×50 SOMa, resulting
in S = 2500 codebooks mi, with 187
methylation values each.

• Each codebook can be seen as a “pro-
totype CpG base” that is indeed an
aggregation representing a cluster of
CpG sites with similar methylation
patterns.

aFull code and experiment parameters to re-
produce the results available in https://github.
com/gsdpi/SOM-DNA-Methylation

Methylation component planes for the 187 PCPG tumors
Blue tones reveal low methylation (β ≈ 0) and red tones represent high methylation (β ≈ 1).

Interpretation of component planes
• Component planes are composed of the aggregated methylation

levels of the prototypes for the 187 tumors. Each component plane
is an epigenetic signature of the tumor, composed of 2500 (50×50)
representative methylation values.

• The 2500 values summarize the overall amount of n=391529 methy-
lation values of all CpG sites. This is a form of dimensionality
reduction through aggregations.

• Regions in the planes represent CpG sites with similar methyla-
tion values across the 187 tumors. Since each CpG site belongs
to a gene, the areas spanned by each gene can be displayed in the
component plane.

• In this case, black points represent the locations of CpG sites from
protocadherine genes, resulting in recognizable patterns potentially
deserving analysis. This can be used to compare and analyze genes
in terms of epigenetic activity.
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t-SNE of tumor epigenetic signatures

t-SNE map based on DNA methylation

• The m component planes can be treated as feature vectors
describing the tumor samples.

• Using the t-SNE algorithm we can display the tumors spa-
tially organized in terms of similarity of their component
planes.

• The t-SNE arranges the tumors into groups with similar
methylation patterns, which can be visually confirmed by
the similar component planes observed within each group.

• The proportion of red areas (high methylation) over blue
areas (low methylation) in the component plane of a tumor
sample is related to the overall level of methylation.

• A global structure is also found in the map according to the
overall methylation levels, with a gradual distribution from
low-methylated tumors on the left, to highly methylated
tumors on the right.

Mutations related to hypoxia-inducible factor (HIF)

• The locations in the t-SNE map of tumors with mutations
in the VHL, SDHx, and EPAS1 genes, provide insights.

• Mutations in these genes disrupt the normal regulation
of the hypoxia-inducible factor (HIF) pathway, leading to
pseudohypoxic conditions that promote tumor growth, an-
giogenesis, and progression of PCPG.

• SDHx appear grouped on highly methylated areas, while
VHL and EPAS1 lay together in areas with intermediate
methylation.

• VHL and EPAS1 are directly involved in the HIF signaling
pathway, while SDHx mutations indirectly affect HIF by
loss of function of SDH genes.

• This reveals a connection between pseudohypoxia patwhays
and DNA methylation patterns.


